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Abstract – We demonstrate that most features ascribed to strong correlation effects in various
spectroscopies of the electron-doped cuprates are captured by a calculation of the self-energy
incorporating effects of spin and charge fluctuations. The self-energy is calculated over the full
doping range of electron-doped cuprates from half filling to the overdoped system. The self-energy
devides the low-energy physics of cuprates into two energy scales: an antiferromagnetic (AFM)
“pseudogap” region near the Fermi level and a high-energy “Mott gap region”. The corresponding
spectral function reveals four subbands, two widely split incoherent bands representing the
remnant of the split Hubbard bands, and two additional coherent, spin- and charge-dressed
in-gap bands split by a spin-density-wave, which collapses in the overdoped regime. The incoherent
features persist to high doping, producing a remnant Mott gap in the optical spectra, while
transitions between the in-gap states lead to AFM pseudogap features in the mid-infrared.

Copyright c© EPLA, 2011

A key issue in electron-doped cuprate physics is to
understand the routes through which cuprates evolve from
a “Mott” insulator at half filling to an AFM region at finite
doping to a Fermi liquid region at overdoping. Recently, we
have introduced a quasiparticle-GW or QP-GW model to
demonstrate that the strong coupling Mott physics model
is inappropriate for the cuprates, and that the correct
model should be an intermediate coupling model which
includes spin-density-wave (SDW) [1,2]. The intermediate
correlation strength of electron-doped cuprates is also
consistent with experimental observations [3].
Such a model explains many diverse phenomena such

as Fermi surface reconstructions [4] and observed quan-
tum oscillations [5], Fermi velocity renormalization [1].
These results indicate that the low-energy pseudogap must
collapse with doping. In sharp contract, optical studies
point to a far more complex and puzzling picture in that
even in the overdoped case, an absorption peak character-
istic of the Mott gap continues to persist [6,7] in the spec-
tra, suggesting that doping introduces new in-gap states
in which the pseudogap physics resides, but that otherwise
the Mott gap persists at all dopings.
Here we show that the same model of the electronic

self-energy, where the quasiparticles are dressed with spin-
density-wave excitations, captures the key experimentally

observed features of the remarkable doping evolution in
optical and other spectroscopies, including in particular
the persistence of the Mott gap in the overdoped regime.
These findings are also consistent with quantum Monte
Carlo (QMC) [8–12] and dynamical mean-field theory
(DMFT) [13,14] calculations.
We evaluate the self-energy Σ as a convolution over the

green function G and the interaction W ∼U2χ (including
both spin and charge contributions) [1,2,15],

Σ(�k, σ, iωn) = ηU
2
′∑
�q,σ′

∫ ∞
−∞

dωp
2π

×G(�k+ �q, σ′, ωn+ωp)Γ(�k, �q, ωn, ωp)Im[χσσ′(�q, ωp)], (1)

where σ is the spin index and the prime over the �q
summation means that the summation is restricted to the
magnetic Brillouin zone. η is the spin degeneracy factor,
taking the value of 1 for the transverse spin flip channel
and 1/2 for the longitudinal spin and charge channel.
In the underdoped region where the SDW dominates,
resulting G, χ and Σ become 2× 2 tensors [16]. We define
a total self-energy as Σt =USτ̃1+Σ, where τ̃1 is the
Pauli matrix along the x-direction and US is the SDW
gap defined below. The self-energy Σt contains essentially
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two energy scales: i) it gives rise to the SDW with an
additional renormalization of the overall quasiparticle
dispersions in the low-energy region [4,17–19], we call it
“pseudogap” region and ii) at higher energies it produces
the Hubbard bands, designated as “Mott gap” region
[20,21]. We use a modified self-consistent scheme, referred
to as quasiparticle-GW (QP-GW )-scheme in which G
and W are calculated from an approximate self-energy
Σt0(ω) =USτ̃1+

(
1−Z−1)ω1̃, where the renormaliza-

tion factor Z is adjusted self-consistently to match the
self-energy Σt at low energy [20,21].
We find that near optimal doping spin waves [11,12,20,

21]1 dress the quasiparticles into a coherent in-gap state,
while the incoherent high-energy features are remnants of
the upper and lower Hubbard bands (U/LHBs)2. With
underdoping the in-gap state develops into a SDW state
which opens a gap between the upper and lower magnetic
bands (U/LMBs). The model also describes the high-
energy kink or the waterfall effect seen in the electronic
dispersion [22] as the crossover between coherent and
incoherent features.
The present calculations are restricted to the electron-

doped cuprates in order to avoid possible complications
of nanoscale phase separation. The self-energy Σt0 splits
the LDA-band, ξ�k (modelled by tight-binding (TB)
parameters [20]) into renormalized UMB (ν =+) and

LMB (ν =−): Eν�k =Z
(
ξ+�k
±
√
(ξ−�k )

2+(US)2
)
, where

ξ±�k = (ξ�k ± ξ�k+ �Q)/2. The AFM magnetization S at

�Q= (π, π) is calculated self-consistently at each doping,
assuming a doping dependent U due to charge screen-
ing [17]. In the present formalism U is renormalized by
Z. The doping dependency of U is chosen such that
ZU reproduces the pseudogap in both angle-resolved
photoemission spectroscopy (ARPES) and optical spec-
tra, while x, S, and Z are determined self-consistently
solving coupled gap equations [19]. Remarkably, the same
set of parameters gives good agreement with ARPES and
optical spectra. Finally, the vertex correction Γ(�k, �q, ω, ωp)
in eq. (1) is taken to its first-order approximation (Ward’s

identity) as Γ(�k, �q, ω, ωp) = 1/Z. Since the k-dependence
of Σ is weak [20], we further simplify the calculation by
assuming a k-independent Σ, which we calculate at a
representative point k= (π/2, π/2).
We begin by discussing the optical spectra of fig. 1.

The frequency-dependent optical conductivity, σ(ω), is
calculated using standard linear response theory in the
AFM state [23], for the full doping range from the
half-filled state to the quantum critical point (QCP) in
the overdoped region. To fit the Drude conductivity, we

1While the low-energy carriers are mainly dressed by electronic
excitations in the magnetic channel [11,20], the charge channel can
also contribute [21].
2In reality, the Mott physics lies at a higher energy, comparable to

the bonding-antibonding separation of the CuO2-hybridized bands,
and the bands we refer to as U/LHB are the incoherent high-energy
tails of the antibonding (LDA) band.

Fig. 1: (Color online) Calculated optical conductivity (solid
lines) for electron-doped cuprate compared with experiment
(symbols of same color) for dopings x= 0.0 to x= 0.15 as
taken from ref. [6] and for x= 0.17 from ref. [7]. The latter
data is subtracted by a background contribution to match
the former data set3. The dashed line gives the background
contribution added to the theoretical spectrum at x= 0. The
blue and red shadings differentiate the “pseudgap” energy scale
and “Mott gap” energy scale by a characteristic energy ∆Mott =
1.5 eV. Inset: inferred doping dependence of the scattering rate.

have introduced an impurity scattering rate τ which is
found to have a strong doping dependence (inset). At
high energy we include a doping-dependent background
contribution (see footnote 3), partially associated with
interband transitions to higher-lying bands not included
in the present calculations4. The background is used to
have the same (linear) energy-dependence for all dopings
with its slope decreasing smoothly with doping. The red
dashed line in fig. 1 shows this interband contribution for
the x= 0.0 spectrum. A very good level of accord is seen
with the experimental results [6,7], without any further
adjustment of intensity.
Interestingly, the spectra show a nearly isosbetic (equal

absorption) point near ∆Mott = 1.5 eV, consistent with the
experimental behavior. We show below that the same
energy scale for ∆Mott is also consistent with the ARPES
data where isosbetic point represents “waterfall” region,
see fig. 2. The doping evolution is completely different on
opposite sides of ∆Mott. Above this point the spectrum
is dominated by a broad hump feature, a signature of
the Mott gap. At half filling, only this feature is present
and the optical spectrum shows an insulating gap whose
energy, structure, and intensity match remarkably with
measurements [6,7]. As doping increases the high-energy
peak shifts to higher energy and broadens.

3The two experimental data set from ref. [6] and ref. [7] are very
similar except the high-energy backgroud contributionwhich suggests
that this background may be largely extrinsic.
4The high-energy bands are predominantly non-bonding oxygens

of the three-band model of cuprates. See Supplemental fig. 3 of
Comanac et al. [12].
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Fig. 2: (Color online) Spectral intensity as a function of ω along
the high-symmetry lines for several dopings (at T = 0). Blue-
to-red color map gives the minimum to maximum intensity. In
each panel, the gold lines represent the renormalized magnetic
bands (Σ0-dressed).

Below the isosbectic point there is little spectral weight
at half filling, but as doping increases spectral weight is
gradually transferred from the higher-energy region to the
mid-infrared (MIR) one. The lower-energy spectrum is
associated with a Drude peak related to intraband tran-
sitions and a mid-infrared peak associated with transi-
tions across the magnetic gap (the pseudogap for the

electron-doped cuprates). With doping, this peak shifts
to lower energy as the magnetic gap collapses and gradu-
ally sharpens. Note that at x= 0.17, when the pseudogap
has collapsed, Mott-gap features still persist in the spec-
trum. The present mean-field calculation overestimates
the Néel temperature TN , but this can be corrected by
including critical fluctuations, grave à la Mermin-Wagner
theorem [24].
The origin of these features can be understood by look-

ing at the doping dependence of the momentum-resolved
spectral weight in fig. 2. In the overdoped case in fig. 2(e),
a kink due to the bosonic coupling reproduces the water-
fall effect below EF , with a corresponding effect above EF ,
splitting the spectrum into an effective three-band behav-
ior, with UHB, LHB, and in-gap states. The features in
the optical spectra are associated with transitions between
these bands: The residual Mott gap arises from the transi-
tion from the LMB to the incoherent UHB (or from LHB
to UMB), while the Drude term is associated with intra-
band transitions near the Fermi level. At lower doping an
AFM gap opens in the coherent in-gap states5, leading to
the UMB/LMB splitting and a four-band behavior similar
to that seen in QMC cluster calculations [10]. Consistent
with the QMC calculations, the coherent in-gap bands are
dressed by magnetic quasiparticles. As the magnetic gap
opens, the MIR feature in the optical spectra, being asso-
ciated with transitions across this gap, shifts to higher
energy.
The quality of self-consistency of our scheme can be

assessed by noting that the final coherent bands have
nearly the same dispersion as the Σt0-dressed ones (gold
lines) used as input to obtain the self-energy. The doping
dependence of the two coherent magnetic bands is in excel-
lent agreement with experiments [25] and earlier mean-
field calculations [17,18], and captures the incoherent
weight (the UHB/LHBs) at higher energies seen experi-
mentally. Note that the incoherent weight is concentrated
near the top and bottom of the bare LDA bands, leading
to a nearly doping-independent UHB-LHB splitting.
Further insight is provided by fig. 3(a), which compares

the full QP-GW DOS (blue line) and the Σ0-dressed
quasiparticle DOS (red line), normalized to the same peak
height, for a representative doping x= 0.04. The good
agreement between various computations over most of the
energy range indicates the high degree of self-consistency
in the self-energy. The dressed DOS shows four well-
separated peaks. A clear leading edge gap of ∼0.3 eV
(∼1 eV at x= 0) can be seen. A gap persists at higher
doping up to x= 0.18 (fig. 1), although it is obscured in
the DOS by band overlap. The importance of the vertex
correction is illustrated by the green line in fig. 3(a),
which shows that setting Γ= 1 reduces the weight in the
U/LHBs.
Figure 3(b) shows how the calculated imaginary self-

energy Σ′′ evolves with doping. The solid lines give the

5We use a single renormalisation factor for both bands at all
dopings.
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Fig. 3: (Color online) (a) The QP-GW DOS (blue lines) is
compared with Σ0-dressed DOS (red lines) calculated at T = 0.
The green lines show the DOS without the vertex correction.
(b) Solid lines give the imaginary part of the self-energy, while
the dashed lines give the corresponding charge contributions.
(c) Doping dependence of self-consistent values of U and ZU
is compared with earlier mean-field results [17,18]. (d) The
renormalization factor Z decreases linearly with doping.

total Σ′′, with the corresponding dashed lines giving
the charge contribution. (Σspin =Σtotal−Σcharge is not
shown.) In the underdoped region the extra splitting at
high energies in the self-energy is related to spin-charge
separation. The spin response is significant at low energy
for all doping but the charge contribution is nearly zero in
the low-energy region for the lower doping and becomes
finite only at higher energies above ∼3 eV. As doping
increases, the charge response moves toward the Fermi
level and increases in contribution to its total value. At
x= 18%, when the AFM gap vanishes, the charge and
spin susceptibility become equal. Note that the broadening
of the self-energy evident in fig. 3(b) is reflected in
the increasing broadening of the Mott gap feature with
doping. The shift of the peak in the imaginary part of
the self-energy towards EF in fig. 3(b) reflects the doping
dependence of the MIR feature in fig. 1.
Figure 3(c) describes the doping dependence of U .

Although the renormalized Hubbard parameter ZU
follows almost the same doping dependence as in mean-
field calculations [17,18], the bare U displays considerably
weaker doping dependence away from half filling. The
renormalization factor Z in fig. 3(d) actually increases
with underdoping6. This can be readily understood. As
we lower doping, the AFM gap increases leading to a
decrease of the spectral weight near the Fermi level. This
causes a reduction of the real part of the self-energy,

6Recall that this Z parameter represents an average renormal-
ization over the coherent band, and is not necessarily equal to the
conventional renormalization factor at EF .

Fig. 4: (Color online) The computed DOS at various dopings
are compared with the corresponding QMC results (blue lines)
for x= 0.0 [8] and for x= 0.05 to x= 0.20 [9]. The red lines in
each panel give our result for t′ = 0, whereas the green lines in
(b) and (c) are for t′ =−0.3t.

shifting the peak in Σ′ towards higher energy. The
resulting slope decrease leads to a larger Z.
Existing QMC calculations on the cuprates generally

employ simpler hopping parameter sets, so we have
repeated our calculations with the same band parameters
for a quantitative comparison in fig. 4. All the QMC
results (blue lines) are obtained for t′ = 0, U = 8t with
a momentum-dependent self-energy correction [8,9].
We have obtained the corresponding DOSs (red lines)
for t′ = 0 for Σ calculated at a fixed momentum of
k= (π/2, π/2), using a doping-dependent renormalized U
(ZU) very similar to the one found for the electron-doped
case in fig. 3(c). (Note that the QMC automatically
generates a renormalized U .) Our result reproduces the
QMC very well for x= 0 in fig. 4(a) where a prominent
electron-hole symmetry is observed. At higher doping,
the QMC results show a relatively smaller coherent peak
above the Fermi level, whereas our result continues to
exhibit near electron-hole symmetry in the in-gap region
as might be expected for t′ = 0 dispersion. We can mimic a
momentum-dependent self-energy by including t′ =−0.3t,
and find that this provides better agreement with the
QMC results as shown by the green lines in figs. 4(b)
and (c). Finally, at x= 0.20, the pseudogap collapses and
our result with t′ = 0 agrees very well with the QMC in
fig. 4(d). As might be expected from our approximate
self-energy calculation, the weight of the UHB is generally
underestimated.
In summary, we find that spin-wave dressing of

the quasiparticles explains the incoherent U/LHB
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features seen in various experiments including the recent
experiments observing waterfall effects in the cuprate
spectra. The self-energy corrections not only renormalize
the large widths of the LDA dispersions but also restore
the residual incoherent spectral weight associated with
U/LHBs. In the underdoped regime, we show that the
coherent in-gap bands reproduce both the four-band
behavior seen in quantum cluster calculations and the
magnetic gap collapse found in the mean-field calculations
and a variety of experiments. The puzzling persistence
of the Mott gap in optical spectra, even as the magnetic
gap collapses, is thus reconciled. The fact that our
calculations work so well confirms that the cuprates can
be understood within the intermediate coupling regime,
with U much less than twice the bandwidth [13,14]. We
extend these calculations to multiband systems such as
iron-pnictide [26], iron-selenide [27] and heavy-fermion
compounds [28] where we find that the magnetic and
superconducting properties can also be understood from
such intermediate coupling theories.
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