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We present a random-phase approximation (RPA)-based multilayer spin-susceptibility calculation for the
trilayer YBa2Cu3O6+y (YBCO) system (including bilayer CuO2 planes and uniaxial CuO chain layer) in the
superconducting state. We show that the observed in-plane anisotropy in the spin-excitation spectrum of YBCO
− which is often interpreted as an evidence for the electron nematic phase − can alternatively be explained
via incorporating the uniaxial CuO chain’s contribution. We demonstrate that the neutron spectra in YBCO is
dominated by the contribution from the four-fold symmetric CuO2 plane state as in other cuprates, however, it
acquires an in-plane anisotropy via finite interlayer coupling with the chain state. The result rules out the claim
that an electronic nematic phase is responsible for the pseudogap state in YBCO.

PACS numbers: 71.10.Hf,73.43.Nq,74.40.Kb,74.72.Kf

I. INTRODUCTION

The formation of electronic liquid crystals is intimately re-
lated to two-dimensional anisotropy phenomena, which are of
intense current interests in the field of strongly correlated elec-
trons, semiconductors,1 2D electron gas,2 graphene3 as well
as in cold atom systems.4 The surge of interests has recently
been extended to various families of unconventional super-
conductors including cuprates,5–9 pnictides,10 Sr3Ru2O7,11

and heavy fermion URu2Si2.12,13 The microscopic origin for
the in-plane anisotropy in these superconducting (SC) systems
which consistently accommodate tetragonal crystal symmetry
is more interesting and exotic. A general question that under-
lies all these materials is whether the anisotropic structure is
related to an emergent nematic electronic liquid crystal phase
or merely comes from the subtle crystallographic distortion or
something else.

In cuprates, pnictides, and heavy fermion URu2Si212,13 sys-
tems, this question has posed widespread research interests
with the hope to explain their unusual normal state phases
from which the SC state is arguably derived. In cuprates,
the experimental evidences of the in-plane anisotropy have
been taken seriously as a definite evidence for the presence
of the electronic crystal liquid phase,18,21 and also been ex-
tended to explain the so-called 1/8 doping problem where su-
perconductivity is strongly quenched.22 Here we provide a dif-
ferent mechanism for the origin of the in-plane anisotropy in
YBa2Cu3O6+y (YBCO). We demonstrate that, even in the ab-
sence of any crystal anisotropy or ‘nematic’ ground state, an
anisotropy is introduced to the SC CuO2 plane state via the
interlayer electronic coupling with the quasi-1D CuO chain
bands.

Experimental implications of anisotropy in cuprates:
The CuO2 plane state is present in all cuprates, and is
arguably responsible for most of the exotic low-energy
phases which vary dramatically within the same fam-
ily. A stripe-like modulation has been well established
in La2−x(Sr/Ba)xCuO4 (LS/BCO),23 Bi2Sr2CaCuO8+δ

(BSCCO)24, Ca2−xNaxCuO2Cl2,25 and HgBa2CuO4+δ

(HBCO)26. On the other hand, most evidences for the
anisotropic structure have been obtained in YBCO via
transport,5 Nernst,9 and inelastic neutron scattering (INS)
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FIG. 1. (Color online) (a) Crystal structure of YBCO with two CuO
chain layers residing at the top and bottom of the unit cell, and two
CuO2 planes intervening between them. Arrows dictate all the elec-
tronic hoppings considered in this calculation (except t′′ which is
not shown). (b)-(c) ARPES results of FS in the extreme underdoping
and overdoping region of YBCO sample.31 Here x is the hole dop-
ing, not the oxygen content. (d) Computed FS in the paramagnetic
state near the optimal doping region. The spectral weight is most
dominant on the chain band, while the bi-layer splitting in the CuO2

bands is hardly visible, due to spectral weight distribution among the
tri-layers.

measurements6, with some recent indication of this phase
in BSCCO from scanning tunneling microscopy (STM).7,8

This material variant pseudogap properties raise an essential
question: Is the mechanism of pseudogap different in different
cuprates, or such differences merely arise from the material
dependent electronic structure? By closely looking at the
YBCO crystal, we indeed notice that this system hosts both
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quasi-2D CuO2 layers and quasi-1D CuO chain layers, as
shown in Fig. 1(a). The FSs measured by angle-resolved
photoemission spectroscopy (ARPES) in the underdoped
[Fig. 1(b)] and overdoped [Fig. 1(c)] region exhibit that while
a pseudogap is opened in the CuO2 bi-layer bands, but the
1D CuO chain FS remains ungapped at all finite dopings.28,31

Additionally, a visual estimation to the Fermi arc seen in the
underdoped case does not reveal any significant presence
of four-fold symmetry breaking, thus indicating that the
origin of pseudogap is not directly related to the observed
anisotropy in this system. On the other hand, YBCO being
a polar compound, there exists a charge transfer between
the layers as a result of the electric fields generated by the
polar unit cell.27 We compute the INS spectra by realistic
multi-layer BCS-RPA calculation to demonstrate that the
interlayer coupling between the chain and plane layers stipu-
lates a two-fold symmetry in the electronic states even when
the isolated bulk planer states do not intrinsically involve any
spontaneous four-fold symmetry breaking.

The rest of the paper is organized as follows. In Sec. II,
we introduce the tight-binding model for the trilayer YBCO
system and the corresponding multi-layer spin-excitation cal-
culation. The results for the static spin-susceptibility at zero
energy and the role of two plane FS as and the chain FS
are given in Sec. III. In the SC state, the origin of the in-
plane anisotropy in the dynamical spin-excitation spectrum is
demonstrated in Sec. IV. The doping and energy dependence
of the FS nesting and the in-plane anisotropy is calculated and
discussed in the context of YBCO phase diagram in Sec. V.
Finally we discuss and conclude in Sec. VI.

II. TIGHT-BINDING MODEL

To realistically model the low-lying electronic states of
YBCO, one requires a minimum of three band model to incor-
porate the bi-layer splitting and the chain band, coming from
CuO2-CuO2-CuO trilayers.30 In each isolated layer, the single
electron hopping between Cu dx2−y2 orbitals is mediated by
O atoms, which is captured by effective tight-binding hopping
parameters. For the plane and chain layers, it is sufficient to
consider up to third and next nearest neighbor hoppings, re-
spectively [see Fig. 1(a)], which construct the isolated layer
dispersions ξ(p/c)k as32

ξpk = −2t(cx + cy) − 4t′cxcy − 2t′′(c2x + c2y) − µp, (1)
ξck = −2tccy − µc. (2)

Here cαx/y = cos (αkx/ya) and µc/p are the chemical poten-
tials for the plane and chain bands, which encode the onsite
potential imbalance and other crystal field effects between the
two layers. We consider the interlayer coupling within sin-
gle electron tunneling matrix-element tpp and tcp, which obey
periodic boundary condition along the c-axis. Therefore the
final Hamiltonian in the trilayer basis is,

Hk =

 ξpk tpp tcp
tpp ξpk tcp
tcp tcp ξck

 . (3)

Note that while isolated plane dispersion ξpk obeys four-fond
symmetry, the total Hamiltonian in Eq. 3 breaks this symme-
try due to its coupling with the chain band via tcp. In other
words, all eigenvalues and eigenstates including that for the
plane states are two-fold symmetric. The computed spectral
weight function on the 2D momentum space at the Fermi level
is plotted in Fig. 1(d) at a representative doping x = 0.15
[this choice of doping represents YBCO6.45 at which the neu-
tron scattering data is compared below], which agrees well
with the corresponding FS trend obtained in ARPES data
[Figs. 1(b)-(c)].31

A. Multilayer BCS susceptibility

The superconductivity is taken to be d-wave like for all
three bands, where the value of the SC gap amplitude is con-
strained by the experimental value31,33 of ∆ =34 meV.34 In
the SC state, the layer-dependent BCS spin-susceptibility ten-
sor is computed from

χjj
′0

ii′ (q, iωm) = − 1

4N

∑
k,n,ν,ν′

Mν,ν′

ii′jj′(k, q)

Tr
[
Gν(k, iΩn)Gν

′
(k + q, iΩn + iωm)

]
. (4)

For each band, G is the 2 × 2 Green’s function, made of nor-
mal and anomalous parts in the Nambu-Gorkov’s notation.35

The interlayer coupling matrix element is Mν,ν′

ii′jj′(k, q) =

φiν(k)φj†ν (k)φi
′

ν′(k+q)φj
′†
ν′ (k+q), where φiν(k) is the eigen-

state of band ν or layer i. In this notation, ν (ν′) is the initial
(final) eigenstate, consists of hybridization between i and j (i′

and j′) layers, and φ is the corresponding eigenvector.
RPA:- Finally, we incorporate the many-body interaction

within random-phase approximation (RPA) as χ̃(q,Ω) =

χ̃(q,Ω)[1 − Ũ χ̃(q,Ω)]−1 (the symbol tilde represents ten-
sor). Since, we consider only the dx2−y2 -orbital for all three
layers, no inter-orbital couplings such as Hund’s coupling are
involved here. We include intra-layer interaction for plane and
chain as Up and Uc, respectively and the inter-layer one be-
tween plane-plane and chain-plane layers as Upp and Ucp.43

III. ANISOTROPY IN STATIC SUSCEPTIBILITY AND
THE ROLE OF FS NESTING

Figure 2 shows the relevant components of the static RPA
susceptibilities in the normal state and their corresponding FS
nestings. The intraplaner component, in Fig. 2(a), obtains a
leading incommensurate nesting at qppa = (π(1 − δa), π) and
qppb = (π, π(1 − δb)), where δa and δb measure the degree of
incommensurability along a and b bond directions. Compar-
ing these two nesting peaks, we immediately find that there is
a prominent anisotropy present in both intensity and magni-
tude of δa and δb. The origin of this anisotropy can be traced
back to the FS anisotropy of the plane band shown by blue
lines in Fig. 2(e). This anisotropy in the plane state is intro-
duced via its hybridization with the chain layer (recall that the
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FIG. 2. (Color online) (a)-(d) Various representative components of
the static RPA susceptibility in the normal state at x=0.15. The dom-
inant nesting in each component is depicted by arrows. The arrows
of same color are overlayed on the corresponding FS in (e). (e) The
FS obtained from Fig. 1(d). (f) Total RPA susceptibility (summing
over all components).

isolated plane dispersion, ξpk, itself obeys four-fold symme-
try). The bi-layer splitting in the plane bands is clearly visible
near k = (0,±π) points while near k = (±π, 0), it mixes
with the chain bands. The nesting between these split bands,
qpp

′
, produces a susceptibility peak in the vicinity of q ∼ Γ,

as seen in Fig. 2(b). The intra-chain and chain-plane compo-
nents of the susceptibility in Figs. 2(c) and 2(d), respectively
are naturally dominated by the quasi-1D components. Sum-
ming over its components at each q and ω, we see that the
full susceptibility accommodates the coexistence of several
nestings with relative intensities, see Fig. 2(f). The compe-
tition between various instabilities originating from the lead-
ing nesting is strongly doping dependent, and hence on the FS
topological changes as discussed below in Fig. 4.

IV. ANISOTROPY IN SPIN RESONANCE AND
SUPERCONDUCTIVITY

INS directly measures the imaginary part of the spin sus-
ceptibility as a function of q and ω. Within the standard itin-
erant picture of unconventional superconductivity, a spin res-
onance develops in the SC state due to the sign-reversal of
the SC order parameters at the FS nesting vectors.36,37 On the
basis of this theory, only qpp vector contributes to the BCS
susceptibility, while the other nesting vectors disappear or be-
come suppressed in the SC state (of course, the inelastic scat-
tering activates other possible scattering channels, however,
their intensities are shown earlier to be comparatively less37).
The computed spin resonance spectra plotted along a- and b-
bond directions in Figs. 2(a) and 2(b), respectively, reveal that
the anisotropy between δa, δb acquires energy dependence due
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FIG. 3. (Color online) (a)-(b) Computed imaginary part of the total
susceptibility, χ′′, in the SC state plotted along (0, π) → (2π, π)
in (a), and (π, 0) → (π, 2π) in (b) (a- and b-bond directions, re-
spectively). (c) Several representative constant energy cuts of χ′′ are
shown as a function of q along a- and b-bond directions. Each spec-
tra are shifted vertically by a constant value for visualization. The
peak position of each spectrum is marked by a small vertical line. (d)-
(e) Two representative constant energy profiles of χ′′ shown below
and near the resonance, respectively. (f) Two representative momenta
cuts through (e) (arrows) shown near Q, and compared with corre-
sponding experimental data (symbols of same color).6 The intensities
of the theoretical and experimental data are normalized arbitrarily to
ease the comparison. The dashed line through the experimental data
is a guide to the eye. (g)-(h) The constant energy experimental pro-
files .6

to the d-wave nature of the SC gap. At zero energy, both
qppa/b touches the nodal points, where δa/b attain their maxi-
mum amplitudes. With increasing energy, qppa/b approach to-
wards Q, and thereby reducing the values of δa/b. Finally,
at ω = 40 eV, both qppa/b march at Q = (π, π), the intensity
of χ′′ becomes maximum and a resonance peak appears. Al-
though the anisotropy disappears at the resonance in its mag-
nitude (δa = δb = 0), but it remains present in the intensity
as can be seen from Fig. 2(e), due to overlap matrix-element
effect between plane and chain layers, see Eq. 4. In fact, the
anisotropy becomes reversed at and above the resonance en-
ergy, as demonstrated in Fig. 3(c). The results agree well with
the experimental data of YBCO4.5, presented in Figs. 2(f)-
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FIG. 4. (Color online) (a)-(d) Static susceptibility at ω = 0 plotted at
four representative dopings. The evolution of the dominating nesting
from the vicinity of Q [arrow in (a)] towards the chain band near
(π/2, 0) [arrow in (d)] as a function of doping is clearly visible. (e)
The degree of incommensurability along a and b axes, defined in
text by δa and δb, respectively is shown as a function of doping.
The interesting jump in the value of δb at x = 0.15 is associated
with the shift of spectral weight from the plane layer to the chain
layer (see text). Different color shadings represent standard YBCO
phase diagram.28,33 Insets: Computed FSs at two extreme dopings of
YBCO.

2(h); the difference in the energy scale between Figs. 3(d) and
3(g) notwithstanding.

V. DOPING DEPENDENCE OF ANISOTROPY

Finally, we study the doping evolution of the anisotropy
in YBCO, and compare it with the YBCO phase diagram in
Fig. 4. In the extreme underdoped region x = 0.025, the
leading static instability in χ′(q, ω = 0) commences at qpp

with both the magnitude and intensity of δa being larger than
those of δb, as seen in Fig. 4(a). With increasing doping, we
notice several interesting characteristic evolution of the sus-
ceptibility: (1) Both δa and δb increase almost monotonically
with doping, however the degree of anisotropy or the differ-
ence δa − δb, does not have significant doping dependence
upto x ∼ 0.15, see Fig. 4(e). (2) With further hole doping,
the incommensurate peaks along the bond directions qppa and
qppb begin to split. Above x=0.15, the splitting becomes suf-
ficiently large so that the maximum intensity in the vicinity
of Q does not remain aligned along the bond directions, but
rotates by 450 to the diagonal directions [see Figs. 4(c)-(d)].

It is noteworthy that the 45o of the INS spectra as a func-
tion of doping is observed earlier in La-based materials where
such rotation occurs at the beginning of the SC dome around
x=0.05,38 while in the present case of YBCO, this crossover
doping coincides with the optimal doping of this compound.
(3) The doping gradually increases intensity at other small
nesting vectors qpp

′/cc near Γ point, which all participate in
nesting the van-hove singularity (VHS) region of the quasi-2D
plane bands, and the quasi-1D FSs of the chain bands, respec-
tively, as defined in Fig. 2(e). With hole doping, these flat
FSs move towards each other [compare FSs at x=0.025 and
x=0.30 in the insets to Fig. 4(e)], and thereby enhance nest-
ings. Similar VHS nesting has been theoretically predicted to
be present in the single-layer BSCCO band structure,39 and
observed in the quasiparticle interference (QPI) pattern of the
same compound as probed by STM40 (in YBCO, this nesting
additionally breaks four-fold symmetry). However, as men-
tioned earlier, these nestings do not survive in the SC state,
because they do not involve sign-reversal of the d-wave SC
gap, and thus can not be detected by INS. (4) Above the op-
timal doping, the maximum intensity at δb jumps suddenly
from the (π, π) region (plane bands) to the chain band region
at qcp [dictated by arrows in Figs. 4(d) and 2(e)] as plotted by
square symbols in Fig. 4(e). As the chain band is 1D, qcp only
appears along 1D, while the incommensurate peak along the
a-bond direction continues to be dominated by plane states.
This is why, the anisotropy between δa and δb becomes re-
versed above the optimal doping.

VI. DISCUSSION AND CONCLUSION

Does anisotropy cause nematic pseudogap order? Coinci-
dentally, the crossover of the leading instability from the plane
to the chain band occurs at the doping where evidences are
mounting in YBCO that the pseudogap also disappears.26,28,33

On the basis of these results as well as numerous evidences
for the presence of FS reconstruction in the pseudogap region
of YBCO, we conjecture that if pseudogap arises from a FS
nesting, the planer nesting qpp ∼ (π, π) that dominates in this
doping region, is most likely be the one.20,41 The leading nest-
ing at qpp also prohibits the possibility of stabilizing a charge
density wave (CDW) in the 1D chain bands via Peierls insta-
bility at qcc/cp in the pseudogap state. CDW can at most be
present as a secondary order.44 Recalling the ARPES results
presented in Fig. 1(b)-(c), our results are consistent with the
observed ungapped chain bands at all finite dopings.

Conclusions:- In summary, we provide a microscopic
model for the trilayer YBCO superconductor to explain the
observed in-plane anisotropy in the spin-excitation spectrum
of this compound. We calculate multi-layer BCS suscep-
tibility within RPA formalism to show that while the iso-
lated planer electronic states intrinsically obey four-fold ro-
tational symmetry, but its observables exhibit a reduced two-
fold symmetry due to inter-layer coupling with the quasi-1D
chain bands. The computed INS spectra exhibit considerable
anisotropy in its incommensurate structure which varies with
energy upto the resonance energy scale, in quantitative agree-
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ment with experimental data at the same doping. We also
present verifiable prediction that the anisotropy becomes re-
versed above optimal doping in YBCO. We conclude that an
incommensurate order with planer nesting around (π, π) is the
leading nesting as in other cuprates, while the anisotropy is a
secondary effect coming form the chain state. Our results rule
out the earlier postulate that nematic order may be the origin
of pseudogap phase in YBCO.
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