PH 364 : Topological phases of matter

Marks: 70 Mid-term (28 Feb, 2020 at 4pm) Max time: 3 hrs

1) Symmetries

a) Determine how the following quantities transform under parity, time-reversal, charge
conjugation and chiral symmetries:

(i) Electrostatic (scalar) potential. (ii) Vector potential. (iii) Hall resistivity.

(iv) Magnetic charge density (p,,), following the modified Maxwell’s eq. V.B = —p,,,
which is invariant under all symmetries. [4x5=20]

b) Suppose we have a Hamiltonian in the 3D momentum space written in the basis of three T’
matrices as
H(K) = ¥, d;(RT;

where the 4-component I' matrices are defined in terms of the two sets of Pauli-matrices t;
and o; matrices (i = x,y,z) as (I, is a 2x2 unit matrix)

Fl = TX®12 ) FZ = Ty®12, F3 = TZ®O-X
These I; matrices follow the Clifford algebra {I}, I} = 26;;.
d;(K) are real, scalar functions of k.

If we set that T; operates on sublattice basis and o; operates on spin basis, this already fixes
the four-component spinor, which is

Y (k) = War(k), Yar(k), Ypi(K), Y (K))".
Your job is to figure out if the Hamiltonian has to be invariant under a given
symmetry, how d;(Kk) should transform under that particular symmetry, i.e., whether
d;(k) = +d;(—k),ord;(k) = 0, for all i =1-5 components.
Q) Parity (P): Defined as

PYar(K) = Pgr(—K) and so on.
PH(K)P~! = H(—K) 5]

(i)  Time Reversal (T): Defined as

TYar(K) = P, (=K), Ta (k) = =, (—Kk), and same for B
THK)T ™! = H(-k) [5]



(iii)  Charge Conjugation (C): Defined as

CYar(K) =Pp (K),  Chp(K) = Ppar(K),
Cypr(K) = =Yg, (k), Cypi(K) = —Pp(K),
CH(K)C™' = —HT(K) (5]

(iv)  Chiral (S): Defined as
SPar(K) = Yar(=K),  SPau(K) = =, (—K),

Spgr(K) = —p(—=K),  Sygi(K) = g (—K)
SH()S™! = —HT (=K) [5]

2) Ahronov-Bohm phase

3)

The Berry phase in real space is: y,, = i ${1,, () |V, (1)). dr, where n is the band index.

(a) Show that the Ahronov-Bohm phase (Peierls phase in a closed loop) acquired by a charge
particle ‘e’ in a magnetic field ‘B’ is the same as the Berry phase acquired by the same

particle.
[Hint Leibniz integral rule: %fsf(x)dx = f(b)] [5]

(b) Now using Laughlin’s argument, and the above formula, to show that the Hall effect
measures twice the number of electron (i.e. 2p where p is the number of electron) per Berry

phase of y (defined in unit of ). [10]

Quantum Hall effect without magnetic field
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figure).

Assume a = 27q, where q is a dimensionless strain parameter.

a) Estimate the effective magnetic field (called pseudo-magnetic field) for such a complex
hopping parameter. [5]

b) If p number of electrons is pumped to the edge per flux of the pseudo-magnetic field through
the unit cell (ab), estimate the Hall conductivity for such a system.

[Hint: Use Streda formula gy, = — Z—Z, where p is the charge density]. [5]

c) Plot the Hall resistivity as a function of strain parameter q.
[Hint: Electrons can be pumped in integer number.] [5]



